Development of magnetic field mapping via heavy ion beam spectral imaging
نویسندگان
چکیده
Mapping magnetic fields via heavy ion beam spectral imaging relies upon establishing a high quality ion beam, identifying beam emission at wavelengths favorable for imaging, and designing an appropriate imaging configuration. Identifying emission lines suitable for imaging is difficult due to intense, broadband radiation of the target reversed field pinch plasma. To compensate, we have worked to raise the beam emission intensity. Simulations of the beam optics and characteristics have led to a technique that achieves a narrower beam and increased ion current at the plasma. Additionally, we are developing computer vision tools to reconstruct beam trajectories based on various camera and system configurations. We simulate charge coupled device images of the vessel interior and beam trajectories, and reconstruct three dimensional trajectories from image pairs. Analysis of the simulated images will guide the system specifications. We present results of the beam optics and camera simulations, surveys of radiation, and status of the diagnostic. © 2004 American Institute of Physics. [DOI: 10.1063/1.1789595]
منابع مشابه
Spectroscopic ion beam imaging for investigations into magnetic field mapping of a plasma
The trajectory of an ion beam as it passes through a magnetically confined plasma is determined by the ion mass, energy, and charge state, and the magnetic field structure. In undergraduate physics laboratories, students use a measure of beam deflection in a well-defined magnetic field to determine the charge-to-mass ratio of a particle. The complementary analysis is equally valid; the field ma...
متن کاملComputer simulation of three-dimensional heavy ion beam trajectory imaging techniques used for magnetic field estimation.
A magnetic field mapping technique via heavy ion beam trajectory imaging is being developed on the Madison Symmetric Torus reversed field pinch. This paper describes the computational tools created to model camera images of the light emitted from a simulated ion beam, reconstruct a three-dimensional trajectory, and estimate the accuracy of the reconstruction. First, a computer model is used to ...
متن کاملChaotic Behavior and Halo Development in the Transverse Dynamics of Heavy Ion Beams
This paper reviews results obtained from recent analytical and numerical investigations of chaotic behavior and halo development induced by charge density inhomogeneities in the transverse dynamics of heavy ion beams. In particular, a test-particle model is used to investigate the charged-particle dynamics in an intense, matched, heavy ion beam with nonuniform density profile propagating throug...
متن کاملModeling Magnetic Field in Heavy ion Collisions Using Two Different Nuclear Charge Density Distributions
By studying the properties of matter during heavy-ion collisions, a better understanding of the Quark-Gluon plasma is possible. One of the main areas of this study is the calculation of the magnetic field, particularly how the values of conductivity affects this field and how the field strength changes with proper time. In matching the theoretical calculations with results obtained in lab, two diffe...
متن کاملHeavy ion beam probe coordinate mapping and calibration at WEGA stellarator.
The heavy ion beam probe (HIBP) is an established nonperturbing diagnostic for high spatially and temporary resolved measurements of magnetically confined plasma parameters such as potential, density, and temperature. These quantities can be determined from the change in the ion beam parameters (charge, intensity, and trajectory) passing through a plasma volume due to collisions with electrons ...
متن کامل